

Application Security Checklist

 2

Laravel Application Security Checklist
Document Version 1

Latest version always available on:

laravelsecuritychecklist.com

Copyright © Darren Chowles 2023

Twitter: @darren_chowles

LinkedIn: Darren Chowles

Laravel is a Trademark of Taylor Otwell. Copyright © 2011-2023 Laravel LLC.

Cover Design: Michael Macneil – ID Studio

Contributor: Stephen Rees-Carter – Securing Laravel

https://laravelsecuritychecklist.com/
https://twitter.com/darren_chowles
https://www.linkedin.com/in/darrenchowles/
https://www.netdreams.co.uk/
https://securinglaravel.com/

 3

Table of Contents

Introduction ... 5

Essential ... 7

Prevent SQL injection ... 7

Rate-limit relevant forms .. 7

Secure password reset procedures .. 7

Don’t commit secrets to your repo ... 7

Secure cookies .. 8

HttpOnly cookies .. 8

Encrypt sensitive data .. 8

Prevent sensitive data exposure ... 8

Securely handle file uploads ... 8

Beware of user-supplied XML .. 9

Avoid open redirects ... 9

Check user access control ... 9

Escape all user-supplied data.. 9

Avoid serialize() / unserialize() ... 9

Validate all input ... 10

Log everything ... 10

Keep dependencies updated ... 10

Turn off debug mode for any public applications ... 10

Use SRI for external styles and scripts .. 10

Use SSL/TLS certificates ... 11

Recommended ... 12

 4

Add a security.txt file ... 12

Use separate encryption keys ... 12

Implement MFA functionality for your users .. 12

Use the proper functions for randomness .. 12

Implement security headers .. 12

Printable Security Checklist .. 13

Essential ... 13

Recommended ... 14

 5

Introduction

Welcome to the Laravel Application Security Checklist. My goal with this

checklist is to provide a go-to for any Laravel application developer who needs

to confirm they’ve taken some of the most important precautions to secure their

web application.

I was inspired to create this checklist after reading The Checklist Manifesto by

Atul Gawande. It highlights the important role of the humble checklist in several

high-complexity industries like the Air Force, hospitals, disaster response,

skyscraper construction and many other business activities.

Please note that this is by no means an exhaustive list. It’s a list I’ve compiled

over time based on experience and research. The cybersecurity landscape is

always evolving, and I’d like to keep this list updated as new threats emerge. If

you have any contributions to share, please do not hesitate to contact me via

the channels above.

The list contains only brief explanations, and the assumption is that you’re

familiar with Laravel. Each of the items alone can be expanded to an in-depth

discussion. I encourage you to research any items that seem unfamiliar and

check out sources like Securing Laravel that have detailed explainers and

examples of most of these recommendations.

A special thank you to Stephen Rees-Carter for reviewing this checklist. Stephen

is very well known in the Laravel security community, and runs an excellent

newsletter called Securing Laravel. Check out some of his talks where he

exploits many of the vectors outlined in this document (much to the horror of the

audience!).

https://securinglaravel.com/

 6

This document is divided into three main sections:

• Essential – these are essential security tips and checks that should be

applied to every application.

• Recommended – these checks aren’t strictly essential but are highly

recommended to strengthen the security posture of your application.

• Printable Security Checklist – a printable checklist of the tips and checks

mentioned in the sections above.

Thank you for reading, and I hope this checklist proves to be a valuable resource

in your developer toolkit.

 7

Essential

Prevent SQL injection

Make use of Eloquent or the query builder and avoid any unprepared or raw

SQL statements where possible. Keep in mind PDO column names are not

bound, never use user input for column names. Pay special attention to

validation where injection is also possible.

Rate-limit relevant forms

Rate-limiting should be applied to all forms susceptible to abuse. This includes

login, registration, contact form, etc. Adding CAPTCHA as another layer of

defence is also recommended.

Secure password reset procedures

When checking an email address for a password reset, provide as little

feedback as possible. The same message should be shown (“If you have an

account with us, you will receive a password reset email shortly.”), whether the

email address was found or not. Also beware of timing attacks that may reveal

if an email address does in fact exist.

A password should never be sent via email. Allow the user to set this via the

website using a time-limited token.

Don’t commit secrets to your repo

Usernames, passwords, API keys, and everything else sensitive so be added to

your .env file and never committed to your repo. A tool like TruffleHog can be

used to catch any secrets that have been leaked by accident.

https://laravel.com/docs/10.x/queries#introduction
https://laravel.com/docs/10.x/queries#introduction
https://laravel.com/docs/10.x/validation#rule-unique
https://laravel.com/docs/10.x/routing#rate-limiting
https://securinglaravel.com/p/in-depth-timing-attacks
https://github.com/trufflesecurity/trufflehog

 8

Secure cookies

This ensures cookies are only sent if the application is served over a secure

(HTTPS) connection. Control it via your .env to disable when developing locally

if needed.

HttpOnly cookies

Set all cookies (or at the very least, the Laravel session cookie) that shouldn’t be

accessible in JavaScript as HttpOnly. This will help mitigate the risk of client-

side scripts accessing the cookie (and potentially stealing the session cookie via

XSS). This is enabled by default for Laravel sessions, and you can confirm this in

the session.php config file.

Encrypt sensitive data

All sensitive data like PII (Personal Identifiable Information) should be encrypted

where possible. Laravel has a very easy-to-use encryption service.

Prevent sensitive data exposure

Avoid exposing information about your app that can be used in an enumeration

attack. If you’re using auto-incrementing IDs for records, expose a

corresponding UUID v4 (or similar scheme that can’t be enumerated) instead.

Securely handle file uploads

Never trust user-uploaded files. Implement checks like file size, type, and limit

the number of uploads (you can add this all to a custom validation rule). Auto-

generate file names, and upload to non-public directories or secured 3rd parties

like AWS S3. See more risk explainers on the OWASP website.

https://laravel.com/docs/10.x/encryption
https://laravel.com/docs/10.x/validation#custom-validation-rules
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

 9

Beware of user-supplied XML

Try avoiding XML from unknown sources as you might be exposed to XML

external entity (XXE) injection. Use the latest versions of PHP XML, and for older

versions, set libxml_disable_entity_loader to true to prevent the ability

to load external enties.

Avoid open redirects

Allowing users to tamper with redirect URLs (you’ve likely seen URLs like these

before: example.com/login?redirect=...) could open you up to

exploitation. Maintain an allow-list for redirects or keep them in a session if

possible.

Check user access control

Users should only be allowed to perform their intended actions. For example,

changing the order number in the browser URL bar shouldn’t allow them to

access the order for another user. And don’t rely on hidden URLs (security

through obscurity). Laravel has excellent authorisation functionality out the box.

Escape all user-supplied data

Use {{ }} instead of {!! !!} if using Blade for templates to prevent XSS

(Cross-Site Scripting) attacks. If you need to allow for HTML, use a package like

HTMLPurifier to reduce the chance of exploitation.

Avoid serialize() / unserialize()

Especially if you’re using untrusted user input. Use json_encode() and

json_decode() instead.

https://www.php.net/manual/en/function.libxml-set-external-entity-loader.php
https://laravel.com/docs/10.x/authorization
https://laravel.com/docs/10.x/blade#html-entity-encoding
https://github.com/mewebstudio/Purifier

 10

Validate all input

All input received from users should be validated to prevent unexpected values

or size overflows. Laravel has an excellent validation system, plus you can

create custom rules for most scenarios.

Log everything

There is a reason Security Logging and Monitoring Failures is in the OWASP

Top 10. Keeping logs of everything from errors to login and password reset

attempts would help in identifying the cause if a breach ever occurred. Setting

up monitoring (e.g. via WAF or log alerts) will also provide you with early

warnings that something suspicious may be happening.

Keep dependencies updated

Over time, dependencies may become vulnerable and need to be updated,

especially if it’s a security-related patch. Remove all dependencies you don’t

need, as this will reduce your attack surface.

Turn off debug mode for any public applications

Debug mode on production can expose your sensitive configuration values. If

you have a website on a dev location and you need debug enabled, add basic

auth so only authorised users can access the app.

Use SRI for external styles and scripts

SRI (Subresource Integrity) is essential for externally loaded styles and scripts. If

the included styles/scripts are versioned and served from a CDN, it might be

more secure to download and serve them from your application. You can use a

service like SRI Hash Generator to generate an SRI hash for your loaded

style/script if it’s not already provided. However, using SRI is not always

possible, and sites like Stripe will require you to load their external script

instead.

https://laravel.com/docs/10.x/validation
https://laravel.com/docs/10.x/configuration#debug-mode
https://www.srihash.org/

 11

Use SSL/TLS certificates

Your entire production application should be served over HTTPS. Put redirects in

place to ensure HTTP requests are redirected to HTTPS. Enable HSTS. Run your

app through an SSL/TLS test to flag any related issues.

https://www.ssllabs.com/ssltest/

 12

Recommended

Add a security.txt file

Place a security.txt file at /.well-known/security.txt containing the

contact details a person can use to inform you if they find a security issue on

your website. You can generate one at https://securitytxt.org/

Use separate encryption keys

If you’re allowing users to encrypt data or exposing raw input and encrypted

results (encryption oracle), use a separate encryption key rather than the default

Laravel APP_KEY for these operations.

Implement MFA functionality for your users

Allow your application users and/or admins to setup MFA. Most consumers

expect this functionality these days. Use an authenticator-based solution rather

than implementing an SMS/text message approach if possible.

Use the proper functions for randomness

If you’re generating any random data in your application (numbers, strings, etc.)

be sure to use functions that produce cryptographically secure randomness.

These include PHPs random_int() and Laravel’s Str::random() (which uses

PHPs random_bytes()).

Implement security headers

Security headers being enabled on your server can add another layer of defence

against things like XSS. Most of these are very easy to add. Run your website

through securityheaders.com for a report and links to additional instructions.

https://securitytxt.org/
https://laravel.com/docs/10.x/helpers#method-str-random
https://securityheaders.com/

 13

Printable Security Checklist

Essential

☐ Prevent SQL injection

☐ Rate-limit relevant forms

☐ Secure password reset procedures

☐ Don’t commit secrets to your repo

☐ Secure cookies

☐ HttpOnly cookies

☐ Encrypt sensitive data

☐ Prevent sensitive data exposure

☐ Securely handle file uploads

☐ Beware of user-supplied XML

☐ Avoid open redirects

☐ Check user access control

☐ Escape all user-supplied data

☐ Avoid serialize() / unserialize()

☐ Validate all input

☐ Log everything

☐ Keep dependencies updated

☐ Turn off debug mode for any public applications

☐ Use SRI for external styles and scripts

☐ Use SSL/TLS certificates

 14

Recommended

☐ Add a security.txt file

☐ Use separate encryption keys

☐ Implement MFA functionality for your users

☐ Use the proper functions for randomness

☐ Implement security headers

 15

